جامعة المنوفية كلية الحاسبات والمعلومات قسم علوم الحاسب # **COURSE SPECIFICATION** ## (LOGIC DESIGN-1) Programme(s) on which the course is CS, IT, IS and OR given Major or Minor element of programs Major **Department offering the program**Computer Science Department offering the course Computer Science Academic year / Level 1st year / 2nd semester #### **A-Basic Information** | Title | Logic Design-1 | | | Code | CS121 | | |--------|----------------|---|----------|------|-----------|---| | Credit | Lecture | 3 | Tutorial | 1 | Practical | 2 | | Hours | Total 6 | | | | | | #### **B- Professional Information** #### 1- Overall aims of course - Understand the principles and operations of combinational circuits, starting from gates till complete combinational circuits. - Understand the design of decoders, encoders, multiplexer, demultiplexer, and their applications - Understand the digital electronics and logic families. ### 2- Intended learning outcomes of course (ILOs) #### 2a-Knowledge and understanding Recognize and appreciate the professional and ethical responsibilities of the practicing computer professional including understanding the need for quality. #### **2b-Intellectual skills** **b1** Solve a wide range of problems related to the analysis, design and construction of computer systems **b2** Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology. ## 2c- Professional and practical skills - **c6** Use appropriate computer-based design support tools - **c8** Appreciate the features of complex computing hardware and software and operate them effectively ## **2d-** General and transferable skills - **d4** Strike the balance between self-reliance and seeking help when necessary in new situations. - **d8** Retrieve information from a variety of sources such as libraries, printed or electronic sources. ## 3- Contents | | Торіс | No
of hours | Lecture | Tutorial/
Practical | |---|--|----------------|---------|------------------------| | 1 | Introduction | 3 | 3 | - | | 2 | Number systems and Codes | | | | | | Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. Error Detection. | 12 | 6 | 6 | | 3 | Digital Arithmetic | | | | | | Binary addition and Subtraction.Binary Multiplication and Division.BCD Addition and Hex. Arithmetic | 6 | 3 | 3 | | 4 | Logic Gates | | | | | | Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates. | 9 | 6 | 3 | | 5 | Boolean Algebra and Logic
Simplification | | | | | | Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. Simplifying Logic Circuits using algebra and K-maps. | 15 | 9 | 6 | | 6 | Combinational Logic | | | | | | Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices | 6 | 3 | 3 | | 7 Programmable Logic • Introduction • Programmable arrays • Programmable Array logic • Generic Array Logic • The GALs 22V10 and 16V8 • Introduction to CPLDs and FPGAs | 6 | 3 | 3 | |---|----|----|----| | 8 Combinational Circuits • Introduction. • Arithmetic Circuits and Comparators. • Decoders, and Encoders. • Multiplexers and Demultiplexers. | 12 | 6 | 6 | | 9 Combinational Logic Programming. Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs VHDL Format and Syntax Intermediate signals in VHDL Representing Data in VHDL Truth Tables using VHDL Decision Control Structures Implementing Adders, Decoders, Encoders, Multiplexers, Demultiplexers, Magnitude Comparators, Code Converters. | 12 | - | 12 | | 10 Logic Families Introduction. Diode, RTL, DTL, ECL, and TTL Logic. CMOS Logic. | 3 | 3 | - | | Total sum | 84 | 42 | 42 | # 4- Teaching and learning methods - 4.1 Lectures. - 4.2 Practical experiments in the laboratory. - 4.3 Exercises and tutorials. - 4.4 Research assignments. ## 5- Student assessment methods #### 5-a Methods 5.a.1 Reports, assignments, and exercises to assess knowledge and understanding. - 5.a.2 Regular oral, practical and written quizzes to assess intellectual skills. - 5.a.3 Practical projects, final practical and oral exams to assess professional skills. - 5.a.4 Reports, assignments, and discussions to assess general and transferable skills. - 5.a.5 Final written exam to assess knowledge and understanding. #### 5-b Assessment schedule | Assessment 1 | 5 th week. | | |--------------|--|-------------------| | Assessment 2 | 8 th week. | Mid term exam | | Assessment 3 | 10 th week. | | | Assessment 4 | 16 th week (Oral and | d practical) | | Assessment 5 | 17 th -18 th weeks (fi | nal written exam) | ## 5-c Weighting of assessments | Semester work | 10% | |-------------------------------|------| | Mid-term examination | 10% | | Oral / Practical examination. | 20% | | Final-term examination | 60% | | Total | 100% | #### 6- List of references #### 6-a Course notes There are lectures notes prepared in the form of a book authorized by the department ## 6-b Essential books (text books) None #### 6-c Recommended books - [1] R. Tocci, Digital Systems Principles and Applications, six edition, 1991, Prentice-Hall, Inc. - [2] B. Holdsworth, Digital Logic Design, Third edition, 1993, Butterworth-Heinemann Ltd. - [3] R. Tocci, Digital Circuits, Prentice-Hall Inc., 2001. - [4] A book prepared and edited by the lecturer, and approved by the department council. #### 6-d Periodicals, Web sites, ... etc IEEE transactions on computers and software. ## 7- Facilities required for teaching and learning - Digital Design and logic programming laboratories. - Laboratory equipments, apparatus and kits. - Datashow, screen, and laptop computer. #### **Course coordinator:** Prof. Fawzy Ali Torkey ## **Head of Department:** Prof. Nabil Abd-El-Wahid Ismail **Date:** / /