

جامعة المنوفية كلية الحاسبات والمعلومات قسم علوم الحاسب

COURSE SPECIFICATION

(LOGIC DESIGN-1)

Programme(s) on which the course is CS, IT, IS and OR

given

Major or Minor element of programs Major

Department offering the programComputer Science

Department offering the course Computer Science

Academic year / Level 1st year / 2nd semester

A-Basic Information

Title	Logic Design-1			Code	CS121	
Credit	Lecture	3	Tutorial	1	Practical	2
Hours	Total 6					

B- Professional Information

1- Overall aims of course

- Understand the principles and operations of combinational circuits, starting from gates till complete combinational circuits.
- Understand the design of decoders, encoders, multiplexer, demultiplexer, and their applications
- Understand the digital electronics and logic families.

2- Intended learning outcomes of course (ILOs)

2a-Knowledge and understanding

Recognize and appreciate the professional and ethical responsibilities of the practicing computer professional including understanding the need for quality.

2b-Intellectual skills

b1 Solve a wide range of problems related to the analysis, design and construction of computer systems

b2 Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology.

2c- Professional and practical skills

- **c6** Use appropriate computer-based design support tools
- **c8** Appreciate the features of complex computing hardware and software and operate them effectively

2d- General and transferable skills

- **d4** Strike the balance between self-reliance and seeking help when necessary in new situations.
- **d8** Retrieve information from a variety of sources such as libraries, printed or electronic sources.

3- Contents

	Торіс	No of hours	Lecture	Tutorial/ Practical
1	Introduction	3	3	-
2	Number systems and Codes			
	 Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. Error Detection. 	12	6	6
3	Digital Arithmetic			
	Binary addition and Subtraction.Binary Multiplication and Division.BCD Addition and Hex. Arithmetic	6	3	3
4	Logic Gates			
	 Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates. 	9	6	3
5	Boolean Algebra and Logic Simplification			
	 Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. Simplifying Logic Circuits using algebra and K-maps. 	15	9	6
6	Combinational Logic			
	 Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices 	6	3	3

 7 Programmable Logic • Introduction • Programmable arrays • Programmable Array logic • Generic Array Logic • The GALs 22V10 and 16V8 • Introduction to CPLDs and FPGAs 	6	3	3
 8 Combinational Circuits • Introduction. • Arithmetic Circuits and Comparators. • Decoders, and Encoders. • Multiplexers and Demultiplexers. 	12	6	6
 9 Combinational Logic Programming. Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs VHDL Format and Syntax Intermediate signals in VHDL Representing Data in VHDL Truth Tables using VHDL Decision Control Structures Implementing Adders, Decoders, Encoders, Multiplexers, Demultiplexers, Magnitude Comparators, Code Converters. 	12	-	12
 10 Logic Families Introduction. Diode, RTL, DTL, ECL, and TTL Logic. CMOS Logic. 	3	3	-
Total sum	84	42	42

4- Teaching and learning methods

- 4.1 Lectures.
- 4.2 Practical experiments in the laboratory.
- 4.3 Exercises and tutorials.
- 4.4 Research assignments.

5- Student assessment methods

5-a Methods

5.a.1 Reports, assignments, and exercises to assess knowledge and understanding.

- 5.a.2 Regular oral, practical and written quizzes to assess intellectual skills.
- 5.a.3 Practical projects, final practical and oral exams to assess professional skills.
- 5.a.4 Reports, assignments, and discussions to assess general and transferable skills.
- 5.a.5 Final written exam to assess knowledge and understanding.

5-b Assessment schedule

Assessment 1	5 th week.	
Assessment 2	8 th week.	Mid term exam
Assessment 3	10 th week.	
Assessment 4	16 th week (Oral and	d practical)
Assessment 5	17 th -18 th weeks (fi	nal written exam)

5-c Weighting of assessments

Semester work	10%
Mid-term examination	10%
Oral / Practical examination.	20%
Final-term examination	60%
Total	100%

6- List of references

6-a Course notes

There are lectures notes prepared in the form of a book authorized by the department

6-b Essential books (text books)

None

6-c Recommended books

- [1] R. Tocci, Digital Systems Principles and Applications, six edition, 1991, Prentice-Hall, Inc.
- [2] B. Holdsworth, Digital Logic Design, Third edition, 1993, Butterworth-Heinemann Ltd.
- [3] R. Tocci, Digital Circuits, Prentice-Hall Inc., 2001.
- [4] A book prepared and edited by the lecturer, and approved by the department council.

6-d Periodicals, Web sites, ... etc

IEEE transactions on computers and software.

7- Facilities required for teaching and learning

- Digital Design and logic programming laboratories.
- Laboratory equipments, apparatus and kits.
- Datashow, screen, and laptop computer.

Course coordinator:

Prof. Fawzy Ali Torkey

Head of Department:

Prof. Nabil Abd-El-Wahid Ismail

Date: / /